Ising model with memory: coarsening and persistence properties
نویسنده
چکیده
We consider the coarsening properties of a kinetic Ising model with a memory field. The probability of a spin-flip depends on the persistence time of the spin in a state. The more a spin has been in a given state, the less the spin-flip probability is. We numerically studied the growth and persistence properties of such a system on a two dimensional square lattice. The memory introduces energy barriers which freeze the system at zero temperature. At finite temperature we can observe an apparent arrest of coarsening for low temperature and long memory length. However, since the energy barriers introduced by memory are due to local effects, there exists a timescale on which coarsening takes place as for the Ising model. Moreover the two point correlation functions of the Ising model with and without memory are the same, indicating that they belong to the same universality class.
منابع مشابه
1 3 M ar 2 00 7 epl draft Effective surface - tension in the noise - reduced voter model Luca
The role of memory is crucial in determining the properties of many dynamical processes in statistical physics. We show that the simple addition of memory, in the form of noise reduction, modifies the overall scaling behavior of the voter model, introducing an effective surface tension analogous to that recently observed in memory-based models of social dynamics. The numerical results for low-d...
متن کاملZero Temperature Dynamics of the Weakly-disordered Ising Model
The Glauber dynamics of the pure and weakly-disordered random-bond 2d Ising model is studied at zero-temperature. The coarsening length scale, L(t), is extracted from the equal time correlation function. In the pure case, the persistence probability decreases algebraically with L(t). In the disordered case, three distinct regimes are identified: a short time regime where the behaviour is pure-l...
متن کامل7 D ec 2 00 6 epl draft Effective surface - tension in the noise - reduced voter model
The role of memory is crucial in determining the properties of many dynamical processes in statistical physics. We show that the simple addition of memory, in the form of noise reduction, modifies the overall scaling behavior of the voter model, introducing an effective surface tension analogous to that recently observed in memory-based models of social dynamics. The numerical results for low-d...
متن کاملMagnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice
Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization, internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.
متن کاملMagnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice
In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4), ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...
متن کامل